
NNUE Neural Networks
Neural networks optimized for efficiency in chess engines



Background 

Human Grandmaster

- Has deep, conceptual 
knowledge about the game

- Can’t calculate more than a 
~dozen moves in a second

- Only considers a few moves in 
a given position

Computer

- Has very limited knowledge 
about the game

- Can calculate millions of moves 
in a second

Chess engine: Computer program to analyse a chess position, generating a list of moves which it thinks 
are strongest.

How do chess engines achieve success?



Facts about chess

Number of possible chess games ~ 10^120

Number of atoms in the known universe ~ 10^82

Clock speed of modern CPUs ~ 10^9 Hz

Chess variations after 10 moves ~ 10^15

The brute force approach to chess is impossible



Problem: Static Evaluation

Search depth must be limited. Static evaluation is required (evaluate the position 
without searching moves)

Traditional approaches:

- Material - who has more pieces?
- Position - who’s pieces are in better places? (e.g. development, pawn 

structure, etc.)
- King safety - who’s king is more exposed?
- Mobility - who’s position is more flexible?

How do we combine these heuristics?



Problem: Static Evaluation

Hand-making a static evaluation function requires hand-tuning weights.

It is difficult to know which combination of heuristics will perform best

Example of only some of the 
weights in my evaluation function



Problem: Static Evaluation - Neural Network

A neural network can learn the weights for me!

If given an chess position (encoded as a vector) a neural network could learn its 
own combination of heuristics

Problem: Neural networks are slow, especially on the CPU

- Neural networks require large matrix multiplication with floating point numbers

- CPU are best for fast, sequential operations                                                with 
integer numbers



Solution: NNUE

NNUE (ƎUИИ Efficiently Updatable Neural Network)

- Popularized by Stockfish, NNUE is a type of neural network optimized for 
turn-based game evaluation functions. It is a fully connected neural network

Two main principles to achieve fast inferences:

- “Efficiently updating” - only part of the network needs to be re-evaluated 
after every move

- Integer quantization for fast evaluation on CPU



Efficiently Updating

Step 1: Ecode chess position as sparse one-hot encoded vector of “active 
features” (e.g. “white pawn on E5”)

Step 2: Make first layer of network be a fully connected linear layer

Step 3: Once network is evaluated, each move only requires taking the 
added/removed features and adding/subtracting the corresponding weights to the 
output of the layer (before activation). Call this the “Accumulator”



Example

The “Accumulator” is what stores the output of the first layer before activation

In the case of a capture, two features would be removed instead of one



Integer Quantization

Step 1: Train the network with floating point weights

- During training, clamp hidden layers to [0, 1] (clipped rectified-linear unit)

Step 2: Choose integer precision for hidden layers

- 8 bit precision for hidden layers means new activation [0, 127]

Step 3: Scale weights and biases into integer domain:

- Scale inputs/bias by 127 (need [0, 1] -> [0, 127]
- For each layer, additionally scale weights/bias by some factor of choice. 

Divide output of each layer by that factor before activation



Why Quantization is so important

CPUs are very fast with low precision integers

- Modern CPUs can perform arithmetic with 64 int8s simultaneously (SIMD)

- These “vector instructions” can be utilized in the neural network

This loop…

…becomes this single instruction



During training After quantization

[0, 1]

[0, 1]

centipawn evaluation

Example

sparse binary input

clamp(0, 1)

[0, 1]

clamp(0, 1)

[0, 1]

[0, 127]

divide by 127
centipawn evaluation

sparse binary input

clamp(0, 127)
divide by 64

clamp(0, 127)

[0, 127]

multiply weights
x127

multiply bias
x127

multiply weights
x64

multiply bias
x127x64



Why are weights scaled by “scaling factor”

Quantization: everything is turned to 
integers - accuracy loss

Scaling weights before converting to 
integer preserves some precision

Can’t scale too much - to have int8 
weights, must be in range [-127, 127]

With scaling factor 64, maximum 
weight is 127/64 = 1.984375



Feature Set

The feature set I decided on was 
simple: each entry in the one hot 
encoded value corresponded to a 
tuple:

(peice_type, color, square)

In the future: multiple perspectives



Network Shape: why?

Quantization - because of loss of accuracy, network depth must be limited

Efficiently updating principle - requires large sparse one-hot encoded input

- result:  majority of knowledge is in first layer. Diminishing returns for 
additional large layers

My network: 

768 -> 16 -> 16 -> 1

Stockfish network:

81,920 -> 512 -> 32 -> 32 -> 1



Data

lichess.com - online chess website

- Lichess open database of collected 
stockfish evaluations from games

- Wrote script to extract position / evaluation 
pairs, encode as vectors, and save to 
database

- Saved approximately 6,000,000 
evaluations. 20% were reserved for testing

https://database.lichess.org/#evals


Training

pytorch on my laptop GPU

- Mean square error loss function

- Stochastic gradient descent with a batch size of 256

- During training, evals were passed through a 
sigmoid activation to give manageable gradients (for 
easier hyperparameter tuning)

- 0.001 proved to be a reasonable learning rate

- Loss converged rapidly to minimum (likely due to 
small model size)

- Parameters were clamped during training to suite 
quantization later



Applying Sigmoid to Evaluations

During training, it proved that using the direct evaluation 
to make the loss calculations caused an inferior model. 
Applying a sigmoid to the evaluation helped.

The sigmoid “squeezes” the extremely large evaluations 
together.

The gradient of the sigmoid is also much less in 
magnitude. This makes hyperparameter tuning easier

Additionally, this transition allows interpolation with 
game results, since the value after sigmoid can be 
interpreted as a probability of winning.



Training



Results

After exporting the model parameters and implementing the network evaluation 
code, a match was run against my most recent version with the hand-crafted 
evaluation function

NNUE Evaluation Hand-crafted Evaluation

62 wins 112 losses26 draws

Was it a failure?



Conclusion

All things considered, I don’t believe that it is a failure

- Feature set size seems to be the largest bottleneck

- Increasing the feature set size would require much more training data

- More data -> bigger model -> better performance

- Quality of data was also lacking

- Once I discover more efficient ways to manipulate/process data, I will use 
everything I learned to create a larger network.



Epilogue

Obviously things worked out for Stockfish?

- Stockfish received the biggest bump in performance it had seen in a long time 
after with the release of Stockfish 12, the first version to come with the NNUE 
evaluation function

Other Neural Networks in chess engines

- A few chess engines such as Leela Chess 0 and AlphaZero utilize neural 
networks to a greater extent that NNUE. Both of these engines use deep 
convolutional neural networks, some reaching up to 40 layers deep. These 
engines evaluate orders of magnitude less positions, relying on the deep 
knowledge of the network.



Sources

Stockfish NNUE docs: 
https://disservin.github.io/stockfish-docs/nnue-pytorch-wiki/docs/nnue.html#conver
ting-the-evaluation-from-cp-space-to-wdl-space

Lichess open database: https://database.lichess.org/#evals

Source code (training/data collection): 
https://github.com/patrickmastorga/chess-data

Source code (engine) (see src/NNUE for implementation): 
https://github.com/patrickmastorga/chess-old

https://disservin.github.io/stockfish-docs/nnue-pytorch-wiki/docs/nnue.html#converting-the-evaluation-from-cp-space-to-wdl-space
https://disservin.github.io/stockfish-docs/nnue-pytorch-wiki/docs/nnue.html#converting-the-evaluation-from-cp-space-to-wdl-space
https://database.lichess.org/#evals
https://github.com/patrickmastorga/chess-data
https://github.com/patrickmastorga/chess-old

