
NNUE Neural Networks
Neural networks optimized for efficiency in chess engines

Background

Human Grandmaster

- Has deep, conceptual
knowledge about the game

- Can’t calculate more than a
~dozen moves in a second

- Only considers a few moves in
a given position

Computer

- Has very limited knowledge
about the game

- Can calculate millions of moves
in a second

Chess engine: Computer program to analyse a chess position, generating a list of moves which it thinks
are strongest.

How do chess engines achieve success?

Facts about chess

Number of possible chess games ~ 10^120

Number of atoms in the known universe ~ 10^82

Clock speed of modern CPUs ~ 10^9 Hz

Chess variations after 10 moves ~ 10^15

The brute force approach to chess is impossible

Problem: Static Evaluation

Search depth must be limited. Static evaluation is required (evaluate the position
without searching moves)

Traditional approaches:

- Material - who has more pieces?
- Position - who’s pieces are in better places? (e.g. development, pawn

structure, etc.)
- King safety - who’s king is more exposed?
- Mobility - who’s position is more flexible?

How do we combine these heuristics?

Problem: Static Evaluation

Hand-making a static evaluation function requires hand-tuning weights.

It is difficult to know which combination of heuristics will perform best

Example of only some of the
weights in my evaluation function

Problem: Static Evaluation - Neural Network

A neural network can learn the weights for me!

If given an chess position (encoded as a vector) a neural network could learn its
own combination of heuristics

Problem: Neural networks are slow, especially on the CPU

- Neural networks require large matrix multiplication with floating point numbers

- CPU are best for fast, sequential operations with
integer numbers

Solution: NNUE

NNUE (ƎUИИ Efficiently Updatable Neural Network)

- Popularized by Stockfish, NNUE is a type of neural network optimized for
turn-based game evaluation functions. It is a fully connected neural network

Two main principles to achieve fast inferences:

- “Efficiently updating” - only part of the network needs to be re-evaluated
after every move

- Integer quantization for fast evaluation on CPU

Efficiently Updating

Step 1: Ecode chess position as sparse one-hot encoded vector of “active
features” (e.g. “white pawn on E5”)

Step 2: Make first layer of network be a fully connected linear layer

Step 3: Once network is evaluated, each move only requires taking the
added/removed features and adding/subtracting the corresponding weights to the
output of the layer (before activation). Call this the “Accumulator”

Example

The “Accumulator” is what stores the output of the first layer before activation

In the case of a capture, two features would be removed instead of one

Integer Quantization

Step 1: Train the network with floating point weights

- During training, clamp hidden layers to [0, 1] (clipped rectified-linear unit)

Step 2: Choose integer precision for hidden layers

- 8 bit precision for hidden layers means new activation [0, 127]

Step 3: Scale weights and biases into integer domain:

- Scale inputs/bias by 127 (need [0, 1] -> [0, 127]
- For each layer, additionally scale weights/bias by some factor of choice.

Divide output of each layer by that factor before activation

Why Quantization is so important

CPUs are very fast with low precision integers

- Modern CPUs can perform arithmetic with 64 int8s simultaneously (SIMD)

- These “vector instructions” can be utilized in the neural network

This loop…

…becomes this single instruction

During training After quantization

[0, 1]

[0, 1]

centipawn evaluation

Example

sparse binary input

clamp(0, 1)

[0, 1]

clamp(0, 1)

[0, 1]

[0, 127]

divide by 127
centipawn evaluation

sparse binary input

clamp(0, 127)
divide by 64

clamp(0, 127)

[0, 127]

multiply weights
x127

multiply bias
x127

multiply weights
x64

multiply bias
x127x64

Why are weights scaled by “scaling factor”

Quantization: everything is turned to
integers - accuracy loss

Scaling weights before converting to
integer preserves some precision

Can’t scale too much - to have int8
weights, must be in range [-127, 127]

With scaling factor 64, maximum
weight is 127/64 = 1.984375

Feature Set

The feature set I decided on was
simple: each entry in the one hot
encoded value corresponded to a
tuple:

(peice_type, color, square)

In the future: multiple perspectives

Network Shape: why?

Quantization - because of loss of accuracy, network depth must be limited

Efficiently updating principle - requires large sparse one-hot encoded input

- result: majority of knowledge is in first layer. Diminishing returns for
additional large layers

My network:

768 -> 16 -> 16 -> 1

Stockfish network:

81,920 -> 512 -> 32 -> 32 -> 1

Data

lichess.com - online chess website

- Lichess open database of collected
stockfish evaluations from games

- Wrote script to extract position / evaluation
pairs, encode as vectors, and save to
database

- Saved approximately 6,000,000
evaluations. 20% were reserved for testing

https://database.lichess.org/#evals

Training

pytorch on my laptop GPU

- Mean square error loss function

- Stochastic gradient descent with a batch size of 256

- During training, evals were passed through a
sigmoid activation to give manageable gradients (for
easier hyperparameter tuning)

- 0.001 proved to be a reasonable learning rate

- Loss converged rapidly to minimum (likely due to
small model size)

- Parameters were clamped during training to suite
quantization later

Applying Sigmoid to Evaluations

During training, it proved that using the direct evaluation
to make the loss calculations caused an inferior model.
Applying a sigmoid to the evaluation helped.

The sigmoid “squeezes” the extremely large evaluations
together.

The gradient of the sigmoid is also much less in
magnitude. This makes hyperparameter tuning easier

Additionally, this transition allows interpolation with
game results, since the value after sigmoid can be
interpreted as a probability of winning.

Training

Results

After exporting the model parameters and implementing the network evaluation
code, a match was run against my most recent version with the hand-crafted
evaluation function

NNUE Evaluation Hand-crafted Evaluation

62 wins 112 losses26 draws

Was it a failure?

Conclusion

All things considered, I don’t believe that it is a failure

- Feature set size seems to be the largest bottleneck

- Increasing the feature set size would require much more training data

- More data -> bigger model -> better performance

- Quality of data was also lacking

- Once I discover more efficient ways to manipulate/process data, I will use
everything I learned to create a larger network.

Epilogue

Obviously things worked out for Stockfish?

- Stockfish received the biggest bump in performance it had seen in a long time
after with the release of Stockfish 12, the first version to come with the NNUE
evaluation function

Other Neural Networks in chess engines

- A few chess engines such as Leela Chess 0 and AlphaZero utilize neural
networks to a greater extent that NNUE. Both of these engines use deep
convolutional neural networks, some reaching up to 40 layers deep. These
engines evaluate orders of magnitude less positions, relying on the deep
knowledge of the network.

Sources

Stockfish NNUE docs:
https://disservin.github.io/stockfish-docs/nnue-pytorch-wiki/docs/nnue.html#conver
ting-the-evaluation-from-cp-space-to-wdl-space

Lichess open database: https://database.lichess.org/#evals

Source code (training/data collection):
https://github.com/patrickmastorga/chess-data

Source code (engine) (see src/NNUE for implementation):
https://github.com/patrickmastorga/chess-old

https://disservin.github.io/stockfish-docs/nnue-pytorch-wiki/docs/nnue.html#converting-the-evaluation-from-cp-space-to-wdl-space
https://disservin.github.io/stockfish-docs/nnue-pytorch-wiki/docs/nnue.html#converting-the-evaluation-from-cp-space-to-wdl-space
https://database.lichess.org/#evals
https://github.com/patrickmastorga/chess-data
https://github.com/patrickmastorga/chess-old

