
Neural Networks
Patrick Astorga



Background



Architecture of Neural Networks

● Each neuron performs linear 
regression on its inputs.

● Then, an activation function is 
applied to introduce nonlinearity.

● On the right a Multi-Layer 
Perceptron is shown, but Neural 
Networks can take more 
complicated shapes.
○ e.g. CNN's, RNN's, LSTM (form of 

RNN), Transformers, etc.



Chess Position 
Evaluation



Convolutional Neural Network (CNN)

Fully connected feedforward neural networks can be impractical for large inputs

Convolution reduces the number of free parameters while maintaining spacial awareness

Transforms feature maps using convolution kernel



Datasets: More data = More better

Lichess open database evaluations:

- Pros: Easy to get started
- Cons: Textual format and limites size

Lc0 Training Data:

- Pros: Billions of filtered evaluations
- Cons: Highly compressed format, required writing 

custom data loader in C++ to read batches of data

Lichess Open Database Evaluations



Challenge: Lc0 Training Data

Managing the large, highly compressed, training data format was a challenge:

- Wrote a C++ library to load batched data from file
- File stores varying length position chains, reading data is sequential by nature

Stochastic Gradient Descent:

- Stochastic gradient descent is more stable when randomness is incorporated into the 
training (don't just iterate in the same order every time)

- Added “drop”: chance that data loader skips over a position in the chain



Centipawn Eval / Result Interpolation

The output layer of the network is linear function giving the eval (centipawn)

- Directly applying the loss to this yields less stability (much higher gradients)

I applied a sigmoid like curve (or tanh) to the output

- This effectively squashes the extreme values
- This also allows for interpolation with game results (-1, 0, 1)

y = tanh(x / 800)



Model Architecture and Results

4 Convolutional layers with ReLU activations

2 Max pooling layers

3 Fully connected layers with ReLU activations

8 x 8 x 12 input (rank, file, piece type) → evaluation



Linear Regression: Stochastic Gradient Descent

My dataset is too large to perform explicit linear regression.

- Iterate over the dataset in batches, and partially fit the model for each batch
- Repeat with a diminishing learning rate
- scikit learn package continues training until validation loss no longer increases



Linear Regression Results: Maximum Interpretability

Black Pawns Black Knights

Linear regression coefficients gives the exact contribution each piece makes on a 
specific square!


